Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities

نویسندگان

  • Giovanni Alessandrini
  • Maarten V. de Hoop
  • Romina Gaburro
  • Eva Sincich
چکیده

We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω ⊂ Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities

We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ⊂ Rn when the so-called Neumann-to-Dirichlet map is locally given on a non empty curved portion Σ of the boundary ∂Ω. We prove that anisotropic conductivities that are a-priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the...

متن کامل

Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data

We consider the inverse boundary value problem of determining the potential q in the equation ∆u + qu = 0 in Ω ⊂ Rn, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension n ≥ 3 for potentials that are piecewise linear on a given partition of Ω. No sign, nor spectrum condition on q is assumed, hence our treatment encompasses the reduced wave equation ∆u+ kcu = 0...

متن کامل

Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates

We study the inverse boundary value problem for the Helmholtz equation using the Dirichlet-toNeumann map at selected frequencies as the data. A conditional Lipschitz stability estimate for the inverse problem holds in the case of wavespeeds that are a linear combination of piecewise constant functions (following a domain partition) and gives a framework in which the scheme converges. The stabil...

متن کامل

Lipschitz Stability of an Inverse Boundary Value Problem for Time-harmonic Elastic Waves, Part I: Recovery of the Density

We study the inverse boundary value problem for the time-harmonic elastic waves. We focus on the recovery of the density and assume the sti↵ness tensor to be isotropic. The data are the Dirichlet-to-Neumann map. We establish a Lipschitz type stability estimate assuming that the density is piecewise constant with an underlying domain partitioning consisting of a finite number of subdomains.

متن کامل

Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation

In this paper we study the inverse boundary value problem of determining the potential in the Schrödinger equation from the knowledge of the Dirichlet-to-Neumann map, which is commonly accepted as an illposed problem in the sense that, under general settings, the optimal stability estimate is of logarithmic type. In this work, a Lipschitz type stability is established assuming a priori that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015